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Application of the Non-Orthogonal Laguerre-L2 Basis to the Calculation of 
Electron-Helium Scattering at Intermediate Energy
(Penggunaan Asas Tak Ortogon Laguerre-L2 untuk Pengiraan Serakan 

Elektron-Helium pada Tenaga Pertengahan)

Agus Kartono & Mustafa Mamat 

Abstract

Differential cross sections for excitation to the n=2 states of atomic helium by electrons were computed for incident 
energies in the range from 30 to 50 eV. The n=2 states excitation cross sections are calculated with the use of close-
coupling expansion with a non-orthogonal Laguerre-L2 basis function. The present status of agreement between theory 
and experiment for excitation of the ground-state was quite satisfactory.
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Abstrak

Pembezaan keratan rentas untuk pengujaan keadaan atom helium n=2 oleh elektron untuk tenaga insiden dikira dalam 
julat daripada 30 kepada 50 eV. Keadaan keratan rentas n=2 dikira dengan menggunakan pengembangan gabungan-
tertutup bersama suatu fungsi asas tak-ortogon Laguerre-L2. Persetujuan antara teori dan eksperimen untuk pengujaan 
ke keadaan asas adalah agak memuaskan.

Kata kunci: Atom helium; gabungan-tertutup; mengangkat; pembezaan keratan rentas
 

INTRODUCTION

Electron-helium scattering is the second most simple 
electron-atom scattering system only being surpassed 
by the electron-hydrogen (e-H) problem. The former 
has substantial advantages from the experimental point 
of view and has been used as a standard against which 
other scattering system may be compared, normalized 
and calibrated. For theorists the e-H system is preferable 
primarily because a three-body system is easier to work 
with than a four-body system. For these reasons, over the 
years there has been a disproportional concentration of 
theoretical and experimental activity: a great deal of e-H 
theory with relatively little experimental support and vice 
versa for e-He system.
	 The study of intermediate-energy electron scattering 
from the helium atom is of interest from both an 
experimental and theoretical point of view. Helium is an 
important component of several different types of plasma 
media, such as the He-Ne laser, the Jovian atmosphere 
and a variety of gas discharges. Electrons of energies less 
than 50 eV are present in the media and it is desirable 
to know accurate differential cross sections for inelastic 
e-He scattering in order to understand these often complex 
plasma environments (Chutjian & Thomas 1975).
	 It is convenient to divide the energy region for the 
incident into low, intermediate and high energy regions. In 
the low energy region the velocity of the incident electron 
is of the same order or less than the velocity of the electrons 

in the target which are taking an active part in the collision. 
In this region only a few target states can be energetically 
excited. The intermediate energy region extends up to 
energy where the velocity of the active target electrons. 
This is the most difficult region to treat theoretically since 
an infinite number of target states can be excited and 
also ionizing collisions are possible. Finally, high energy 
region is characterized by the kinetic energy of the incident 
electron and the net Coulomb attraction potential so the 
first Born or Coulomb-Born approximation will usually 
be applicable. Calculations in Born or Coulomb-Born 
approximations are legion. Invaluable as these calculations 
are, they are not sufficiently accurate for most applications 
as the temperature of plasma is high, this serves mainly to 
increase the ionization state of plasma and the important 
energy region remains below about four times the threshold 
excitation energy.
	 The energy range of interest in atomic physics has 
been divided into the low (below ionization threshold), 
intermediate (between one and ten times the ionization 
threshold) and high (more than ten times the ionization 
threshold) regions. The ionization threshold of the helium 
atom is 24.58 eV. Here, we primarily concentrate on three 
energies 30 to 50 eV in the intermediate region. This is in the 
most difficult intermediate energy range, being only 5.42 to 
25.42 eV above the ionization threshold. The intermediate 
energy region extends up to incident electron energy where 
the velocity of the incident electron is typically about four 
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times the velocity of the active target electrons. This is the 
most difficult region to treat theoretically since an infinite 
number of target states can be excited and also ionizing 
collisions are possible. In intermediate energies, there 
should be an infinite number of bound target states and 
also continuum states should be included in the expansion. 
One approach which has had some success is based on this 
expansion where some of the target states are replaced by 
suitably chosen pseudostates which are not eigenstates of 
the target Hamiltonian. Instead, these pseudostates each 
represent an average in some sense over the complete set 
of target eigenstates.
	 A new expansion of the three-body Coulomb wave 
functions in a non-orthogonal Laguerre-type function basis 
and the frozen-core model is used to calculate the three-
body Coulomb Hamiltonian. It is shown that discretization 
of the radial kinetic energy and the Coulomb problem in 
the attractive case for the helium ground state (1s) give 
the modified Pollaczek polynomials, whereas the other 
discretization of the radial kinetic energy and the Coulomb 
problem in the attractive and electron-electron potential 
case for the helium excitation states give a new modified 
Pollaczek polynomial. The resulting three-term recurrence 
relation is shown to be a special case of the Pollaczek 
polynomials which is a set of orthogonal polynomials 
having a nonempty continuous spectrum in addition to an 
infinite discrete spectrum. The completeness relation of the 
three-body Coulomb wave functions is calculated in term 
of the configuration interaction coefficient via the Gaussian 
quadrature. It is shown that the weights and configuration 
interaction coefficients converge to the certain number for 
different basis size (Kartono & Mamat 2010a). 
	 For intermediate energies, there should be an infinite 
number of bound target states and also continuum states 
should be included in the expansion. One approach which 
has had some success is based on this expansion where 
some of the target states are replaced by suitably chosen 
pseudostates which are not eigenstates of the target 
Hamiltonian. Instead these pseudostates each represent 
an average in some sense over the complete set of target 
eigenstates (Kartono & Mamat 2011).
	 The close-coupling method relies on the reformulation 
of the Schrödinger equation into an infinite set of coupled-
channel equations by expanding over the complete set of 
target states. The key to the application of this method and 
the models it generates depends on the approximations 
we make to incorporate the ‘complete’ set of target states. 
Since the complete set always includes an infinite number 
of discrete excited states as well as non-normalisable 
continuum states, approximations will always have to be 
made. The difficulty in applying this approach is that the 
continuum channels are known to be very important in 
the intermediate energy region and coupling to them must 
be included with little approximation. One of the ways 
to approximate the continuum states is positive-energy 
pseudostates formed from the non-orthogonal Laguerre-L2 
basis function (Kartono & Mamat 2010b). Because there 
are an infinite number of discrete and continuum target 

states, methods must be devised in order to render the 
equations numerically soluble. One method which suggests 
itself is to replace the integration over continuum states 
of the close-coupling equations by numerical quadrature. 
The convergence of such a method can be determined 
by increasing the order of the quadrature until scattering 
amplitudes are stable to a specified accuracy, for example 
1% (Bray & Stelbovics 1992).
	 The use of basis sets to solve the Schrödinger equation 
for electron scattering from atomic has long history in 
atomic physics. Many types of basis set have been tried 
in the past but we focus in the use of the non-orthogonal 
Laguerre-L2 basis function which is a relatively new 
development in two-electron atom. The non-orthogonal 
Laguerre-L2 basis function has the property of ‘complete’ 
with a relatively small number of basis set. It is therefore 
our further goal to apply these methods from the electron-
helium atom scattering to complex atoms calculations. 
	 The primary purpose of this paper was to demonstrate 
the pseudostate-close-coupling (PSCC) method using a non-
orthogonal Laguerre-L2 basis function to the calculation of 
electron-helium scattering at low-to intermediate-energy 
electron. We used a detailed description of the helium 
target which was presented by Winata and Kartono (2004). 
The frozen-core approximation is used to calculate the 
helium states. This type of approximate description of the 
target should be good for scattering problems in which 
the dominant reaction mechanism is by one-particle 
excitations. The PSCC method utilizes an expansion of the 
target in a complete set of non-orthogonal Laguerre-L2 
basis function which forms a basis for the underlying 
Hilbert space. The PSCC method is those calculations 
for which, in addition to the treatment of true discrete 
eigenstates, there are also a number of square-integrable 
states with positive energies. These so-called pseudostates 
are usually obtained by diagonalizing the Hamiltonian in 
a non-orthogonal Laguerre-L2 basis function.

Expansion of the Helium Target Wave Functions

We must decide on the method of calculating structure 
of the helium target ground and excited states. We have 
written a general configuration interaction program 
which diagonalizes the helium Hamiltonian in the anti-
symmetrized two-electron basis, where the radial part of 
the single-particle functions ønl are taken to be the non-
orthogonal Laguerre basis function:
			    				     	
	 ønl(r) = (λlr)l+1 exp(–λlr/2) (λlr),	 (1)

and where the (λlr) are the associated Laguerre 
polynomials,  λl is the interaction parameter and n ranges 
from 1 to the basis size N.
	 The target Hamiltonian HT is:

	 H = H1 + H2 + V12,	 (2)

where:
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	 Hi = Ki + Vi = - 	  (3)

for i = 1, 2 , is the one-electron Hamiltonian of the He+ 
ion (Z = 2), and:

	 V12 = 	 (4)

is the electron-electron potential. Atomic units (a.u.) are 
assumed throughout.
	 Although the above Hamiltonian formalism is 
general and includes two-electron excitation, in practice 
we have found that it is sufficient to make the frozen-
core approximation, where one of the electrons is in a 
fixed orbital while the second electron is described by 
a set of independent L2 functions, thus permitting it to 
span the discrete and continuum excitations, in which all 
configurations have one of the electrons occupying the 
lowest orbital. The resulting target states Φ(x1, x2), where 
x is used to denote both the spatial and spin coordinates, 
satisfy

	 	 (5)

in order to get a good description of the He+ ion state, where 
is the energy associated with the 1s state of He+ ion.

	 The excitation states for Φ(x1, x2) can be obtained by 
solving the equation:

	 	 (6) 

where
 

is the energy associated with the excitation states 
of the helium atom.
	 In our work, we simplify the problem by using the 
frozen-core model, in which all configurations have one 
of the electrons occupying the lowest orbital. In order to 
get a good description of the ground states we take λ0 =4  for n=1. This choice generates the He+ 1s orbital, which 
allows us to take into account short-range correlations in 
the ground state, as well as being able to obtain an accurate 
representation of excited discrete and continuum states. 
To obtain good nS excited states we take λ0 =0.93 (triplet 
and singlet) for n> 1. For nP excited states we takes λ1 = 
0.72 (triplet) and λ1 = 0.73 (singlet) and for nD excited 
states we take λ2 = 0.62 (triplet) and λ2 = 0.63 (singlet). 
For examples, the all of roots and resulting eigenvalues 
for nS excited states are presented in Table 1.
	 The configuration interaction coefficients  are 
given by:

	 	 (7)

where the notations α and β are used to denote the 
first and second electron and WNi are the associated 
quadrature weights of Gaussian quadrature based Pollaczek 
polynomials which are given by:

	 	 (8)

Solving the Coupled 
Lippmann-Schwinger Equations 

This rearrangement is such that the asymptotic (large r0) 
Hamiltonian is K0 + HT, and this will be used to generate 
the Green’s functions and boundary conditions for the total 
wave functions:

	 	
(9)

where  is the incident projectile momentum and Φi  is 
the initial target state. We define the coupled Lippmann-
Schwinger equation for the T-matrix a:

	 		

	 (10)

where the projectile waves (discrete or continuous)
 satisfy:

						       		
	 	 (11)

	 The on-shell momentum εk =  are obtained 
from: 
						       		
	 E – εn – = 0.	 (12)

and exist only for open channels n such that E = εi – 
> εn.
	 In practice, no numerical method for solving the 
coupled T-matrix equations in the form (10) has yet been 
implemented. The difficulty is that in order to solve this 
integral equation it must be closed by allowing the index 
i and f to run over the same complete range as n, which 
leads to singular V-matrix elements whenever both i, f and 
n are in continuum.
	 The approach that is taken in this work is to diagonalize 
the helium target Hamiltonian in a set of non-orthogonal 
Laguerre-L2 basis function which when extended to 
completeness, form a basis for the target Hilbert space. 
The use of non-orthogonal Laguerre-L2 basis function 
eliminates the problem of singular continuum-continuum 
V-matrix elements. Also most importantly, with a known 
basis, the convergence of the expansions can be studied 
in a systematic manner with increasing number of basis 
functions.
	 We introduce a finite set of N square-integrable states 

which satisfy:

				  
	  			 

	 	 (13)

and have the property:
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Table 1. The roots and pseudostates energies (εiα
 + εiβ

) (a.u.) which were produced from non-orthogonal 
Laguerre-L2 expansions are shown for the ground states, λlα

 = 4.0 for Nα = 1,1.3S excited states, λlβ 
= 0.93 for Nβ = 

5, 10, 15, 20. Powers of ten are denoted by the number in brackets

Nβ i xiβ
1S xiβ

3S

5 1
2
3
4
5

0.66808090(+1)
-0.35185507(+1)
-0.16628586(+1)
-0.35362914
0.68283608

-2.145
-2.060
-2.027
-1.949
-1.430

0.13282618(+1)
0.41686718(+1)

-0.50627876(+1)
-0.15819399(+1)
0.38607842

-2.175
-2.068
-2.024
-2.022
-1.757

10 1
2
3
4
5
6
7
8
9
10

0.66808089(+1)
-0.35195686(+1)
-0.18855244(+1)
-0.14455480(+1)
-0.10519270(+1)
-0.57415939
-0.77645763(-1)
 0.37253183
 0.72269176
 0.93569806

 -2.145
-2.060
-2.033
-2.020
-2.003
-1.971
-1.908
-1.765
-1.333
1.234

0.13250302(+1)
 0.41686005(+1)
-0.50659650(+1)
-0.21120690(+1)
-0.15184051(+1)
-0.10145974(+1)
-0.42011142
 0.16170720
 0.63352830 
 0.92129230

-2.175
-2.068
-2.036
-2.022
-2.001
-1.956
-1.851
-1.521
-1.150
0.622

15 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.66808089(+1)
-0.35195686(+1)
-0.18857648(+1)
-0.14816654(+1)
-0.12887558(+1)
-0.10902887(+1)
-0.84176699
-0.56057641
-0.26506416
 0.27839887(-1)
 0.30247889
 0.54481143
 0.74294921
 0.88776305
 0.97358844

-2.145
-2.060
-2.033
-2.021
-2.014
-2.005
-1.991
-1.970
-1.938
-1.886
-1.799
-1.635
-1.272
-0.193
6.027

0.13250260(+1)
0.41686005(+1)

-0.50659650(+1)
-0.21123202(+1)
-0.15654176(+1)
-0.13298493(+1)
-0.10998427(+1)
-0.81221773
-0.48953736
-0.15626455
0.16520870
0.45456512
0.69410085
0.86942456
0.97091398

-2.175
-2.068
-2.036
-2.024
-2.015
-2.005
-1.989
-1.963
-1.922
-1.850
-1.714
-1.405
-0.462
5.279
7.258

20 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.66808089(+1)
-0.35195686(+1)
-0.18857648(+1)
-0.14819681(+1)
-0.13084548(+1)
-0.11979999(+1)
-0.10705412(+1)
-0.91232049
-0.73101700
-0.53401026
-0.32808692
-0.11972151
 0.84878801(-1)
 0.27982937
 0.45966677
 0.61946674
 0.75496825
 0.86269873
 0.94010779
 0.98575646

-2.145
-2.060
-2.033
-2.021
-2.014
-2.010
-2.004
-1.995
-1.983
-1.967
-1.946
-1.916
-1.873
-1.809
-1.710
-1.543
-1.231
-0.543
1.480

12.975

0.13250260(+1)
0.41686005(+1)

-0.50659650(+1)
-0.21123202(+1)
-0.15656459(+1)
-0.13501023(+1)
-0.12233178(+1)
-0.10829059(+1)
-0.90766420
-0.70670226
-0.48919027
-0.26355659
-0.37805456(-1)
0.18045213
0.38408549
0.56657397
0.72214597
0.84592530
0.93416906
0.98492723

-2.175
-2.068
-2.036
-2.024
-2.016
-2.011
-2.004
-1.995
-1.982
-1.963
-1.937
-1.900
-1.845
-1.759
-1.612
-1.334
-0.713
1.156

12.146
13.250
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	 (14)

	 With these definitions, the sum and integral in the 
Lippmann-Schwinger equation (13) become a single sum 
over N, with the target states and energies being replaced 
by  and  respectively. We define:

	 	
	 (15)

where for the physical T-matrix elements of interest we 
must have  and  to sufficiently high 
precision. With these definitions we have:

	 	 (16)

for the physical T-matrix elements.
	 It is a Gaussian-type quadrature and the underlying 
orthogonal polynomials are of the Pollaczek class. It can 
be shown that weights of the negative energy L2 states 
convergence to unity in equation (17) in the limit of large 
N and that  and  This ensures that 
the limiting procedure (18) gives the correct T-matrix 
amplitudes (13) for the transitions to 2S level.
	 The partial wave Lippmann-Schwinger equation 
corresponding to (18) for the reduced T-matrix elements 
are:

	
	

	

 
(17)

	 The differential cross sections for scattering from 
channel i to channel f at an angle θ is

	 	
	 (18) 

	 The solution of equations (17) and (18) is calculated 
by Gaussian-type quadrature method.

NUMERICAL RESULTS

In this paper it was our aim to demonstrate that the 
PSCC method was able to provide a relatively accurate 
description of electron-helium scattering at projectile 
energy of intermediate region. We introduced the 
approximation of treating the helium target by the frozen-
core model, where we restricted one of the electrons to be 
the 1s He+ orbital. The frozen-core model approximation 
reduced convergence studies to treating only one-electron 
excitation.
	 Our tests of this approximation for intermediate energy 
excitation scattering require many expansion states. The 
former has a maximum of 120 channels and couples a 
total of 37 states consisting of 7 1S, 6 3S, 6 1P, 6 3P, 3 1D, 
3 3D, 3 1F and 3 3F. For large bases used, calculations are 
close to the limit of our desktop workstation computational 
resources.

θ (deg)

dσ
/d

Ω
 (1

0-1
9  c

m
2  s

r-1
)

Figure 1. The 21S differential cross sections for electron-helium scattering at a projectile energy of 30 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements are 

due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)
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	 The best of the other calculations was the CCC 
calculation of Fursa and Bray (1995). The difference 
between the PSCC and CCC calculations were predominantly 
due to the inclusion of the different basis size and the type 
of basis in the close-coupling formalism. Fursa and Bray 
(1995) use the orthogonal Laguerre basis to constructive 
of the helium target. 
	 Discrepancy with experiments and other theories is 
still substantial at an impact energy range of 30-50 eV. The 
discrepancy between this work and experiments suggests 
that slightly large bases used calculations are necessary to 
get better accuracy.
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Figure 2. The 23S differential cross sections for electron-helium scattering at a projectile energy of 30 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements 

are due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)
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Figure 3. The 21S differential cross sections for electron-helium scattering at a projectile energy of 40 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements 

are due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)

	 In Figures 1 to 6, we present the excitation differential 
cross sections the 21S and 23S state calculated by the PSCC 
method for electron-helium scattering on the ground state 
at a range of projectile energies of 30 to 50 eV. These are 
compared to some of the available experiments and theories. 
From the figures, we see that there is essentially complete 
qualitative, and often quantitative, agreement between the 
PSCC calculation and experiment of Trajmar et al. (1992) 
(± 19 to 20% error bars). We noted one exception to this 
at the forward and backward angles for the 21S and 23S 
excitation, where the PSCC theory was considerably below 
the measurements of Trajmar et al. (1992).
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CONCLUSION

We have presented some results of recent PSCC calculations 
applied to the electron-helium system. Specially, 
differential cross sections for excitation to the 23S and 21S 
states of atomic helium by electrons were computed for 
incident energies in the range from 30 to 50 eV. Generally 
we found satisfactory agreement between theory and 
experiment for excitation transitions involving the ground 
state. The frozen-core approximation is used to calculate 
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Figure 4. The 23S differential cross sections for electron-helium scattering at a projectile energy of 40 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements 

are due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)
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Figure 5. The 21S differential cross sections for electron-helium scattering at a projectile energy of 50 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements 

are due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)

the helium states. This type of approximate description 
of the target should be good for scattering problems 
in which the dominant reaction mechanism is by one-
particle excitations. At a later stage, we will present the 
calculations of the excitation differential cross sections for 
larger bases. To examine the convergences, in the most 
difficult intermediate energy region, we will also present 
the convergence of the PSCC method with the inclusion of 
G states and many continuum states.
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Figure 6. The 23S differential cross sections for electron-helium scattering at a projectile energy of 50 eV. The 
present calculation is denoted by PSCC and is obtained using 37 states in the CC formalism. The measurements 

are due to Trajmar et al. (1992). The calculations denoted by CCC are due to Fursa and Bray (1995)


